1、VO⊥平面ABCD,VO⊥CO,三角形VOC为直角△得:VC^2=CO^2+vO^2,VC=√h^2+2a^2
而E为VC中点,故OE=CE=VE=VC/2=(√h^2+2a^2)/2
OB=√2a,可以证明DE=BE,OE为其对称轴,BE=√OE^2+OB^2=(√h^2+10a^2)/2
设
1、VO⊥平面ABCD,VO⊥CO,三角形VOC为直角△得:VC^2=CO^2+vO^2,VC=√h^2+2a^2
而E为VC中点,故OE=CE=VE=VC/2=(√h^2+2a^2)/2
OB=√2a,可以证明DE=BE,OE为其对称轴,BE=√OE^2+OB^2=(√h^2+10a^2)/2
设