关于函数导数问题确定a、b的值,使函数f(x)=(1-cosax)/x,x0在(-∞ +∞)内处处可导f(x)是分段函数

1个回答

  • 首先,要使f(x)在(-∞ +∞)内处处可导,须f(x)在(-∞ +∞)内连续

    即须f(x)在x=0处连续

    即lim(x->0-)f(x)=lim(x->0+)f(x)=f(0)

    lim(x->0-)f(x)=lim(x->0-)[(1-cosax)/x]=lim(x->0-)asinax=0无论a为何值恒成立

    lim(x->0+)f(x)=lim(x->0+)ln(b+x^2)/x=0,则

    lim(x->0+)ln(b+x^2)=0,且lim(x->0+)[2x/(b+x^2)]=0

    即b=1

    其次要使f(x)在(-∞ +∞)内处处可导,只需要使f(x)在x=0处可导

    即f'(0-)=f'(0+)

    ∵f'(0-)=d[(1-cosax)/x]/dx |(x=0)=lim(x->0)[axsinax-(1-cosax)]/x^2

    =lim(x->0)[asinax+(a^2)xcosax-asinax]/2x

    =lim(x->0)[(a^2)cosax-(a^3)xsinax]/2

    =(a^2)/2

    f'(0+)=d[ln(1+x^2)/x]/dx|(x=0)=lim(x->0)[2(x^2)/(1+x^2)-ln(1+x^2)]/x^2

    =lim(x->0)[2(x^2)-(1+x^2)ln(1+x^2)]/[(x^2)(1+x^2)]

    =lim(x->0)[4x-2xln(1+x^2)-2x]/(2x+4x^3)

    =lim(x->0)[1-ln(1+x^2)]/(1+2x^2)

    =1

    ∴(a^2)/2=1

    a=±√2

    综上可得

    a=±√2, b=1