f(x) = ax^2 + bx + c.a > b > c.a 不等于0.
f(1) = a + b + c = 0
b = -a -c,
因 a > b > c,
所以,
a > -a-c > c,
c > -2a ,并且,c < -a/2
-2a < c < -a/2,
-2a < -a/2,
3/2 a > 0,
a > 0.
此时,
-2 < c/a < -1/2
-3 < c/a - 1 < -3/2
3 > 1 - c/a > 3/2 > 0.
|AB| = |1 - c/a| = 1 - c/a.
所以,
3 > |AB| > 3/2.