(救命阿!)证明下列恒等式.2(sin2a+1)-----------------=1+tana1+sin2a+cos2

1个回答

  • 1)

    2(sin2α+1)

    =2*2sinαcosα+2

    =4sinαcosα+2

    1+sin2a+cos2a

    =1+2sinαcosα+2cos^2(α)-1

    =2sinαcosα+2cos^2(α)

    2(sin2α+1)/(1+sin2a+cos2a)

    =(4sinαcosα+2)/(2sinαcosα+2cos^2(α))=(2sinαcosα+1)/(sinαcosα+cos^2(α))

    =[(sinαcosα+cos^2(α))+(sinαcosα-cos^2(α)+1)]/sinαcosα+cos^2(α))

    =1+(sinαcosα-cos^2(α)+1)/(sinαcosα+cos^2(α))

    =1+(sinαcosα+sin^2(α))/(sinαcosα+cos^2(α))

    =1+sinα(cosα+sinα)/[cosα(cosα+sinα)]

    =1+sinα/cosα

    =1+tanα

    2)

    2/sin2α

    =1/(sinαcosα)

    =[sin^(α)+cos^2(α)]/(sinαcosα)

    =sinα/cosα+cosα/sinα

    =tanα+cotα

    3)

    2sin^3(α)/(1-cosα)

    =2sin^2(α)sinα/(1-cosα)

    =2(1-cos^2(α))sinα/(1-cosα)

    =2(1+cosα)sinα

    =2sinα+2cosαsinα

    =2sinα+sin2α

    4)

    3sinB=sin(2a+B)

    →3sin[(a+B)-a]=sin[(a+B)+a]

    sin(α±β)=sinα·cosβ±cosα·sinβ

    所以,

    3sin(a+B)cosa-3cos(a+B)sina=sin(a+B)cosa+cos(a+B)sina

    得到

    2sin(a+B)cosa=4cos(a+B)sina

    sin(a+B)cosa=2cos(a+B)sina

    两边同除cos(a+B)cosa

    tan(a+B)=2tana