解题思路:根据
F(x)=
∫
x
0
f(t)dt
与f(x)的奇偶性关系可以很容易求解该题.
由于:F(x)=∫x0f(t)dt与f(x)的奇偶性关系为:当f(x)为偶函数时,F(x)=∫x0f(t)dt为奇函数;当f(x)为奇函数时,F(x)=∫x0f(t)dt为偶函数.因此:要判断F(x)=∫x0f(t)dt的奇偶性只需要判断被积函数f(x)的...
点评:
本题考点: 积分上限函数及其求导;原函数与不定积分的关系.
考点点评: 本题主要考察被积函数与原函数的奇偶关系,属于基础题.但该知识点考生容易忘记,需注意.