f(x) = (2+p)x + 6px^2 + p^2 -4p
f(x)能被x-1整除
即f(x)=(x-1)p(x)
所以f(1)=0
(2 + p) + 6p + p² - 4p = 0
p = -1 或 -2
当p=-1
f(x) = -6x² + x + 5 = -(x - 1)(6x + 5)
当p=-2
f(x) = -12x² + 12 = -12(x + 1)(x - 1),能被x+1整除
所以只有p = -1满足
f(x) = (2+p)x + 6px^2 + p^2 -4p
f(x)能被x-1整除
即f(x)=(x-1)p(x)
所以f(1)=0
(2 + p) + 6p + p² - 4p = 0
p = -1 或 -2
当p=-1
f(x) = -6x² + x + 5 = -(x - 1)(6x + 5)
当p=-2
f(x) = -12x² + 12 = -12(x + 1)(x - 1),能被x+1整除
所以只有p = -1满足