规律:n×(n+1)×(n+2)×(n+3)+1=(n²+3n+1)²
证明:
左边=[n*(n+3)]*[(n+1)*(n+2)]+1
=(n²+3n)*(n²+3n+2)+1
=(n²+3n)²+2(n²+3n)+1
=(n²+3n+1)²=右边
规律:n×(n+1)×(n+2)×(n+3)+1=(n²+3n+1)²
证明:
左边=[n*(n+3)]*[(n+1)*(n+2)]+1
=(n²+3n)*(n²+3n+2)+1
=(n²+3n)²+2(n²+3n)+1
=(n²+3n+1)²=右边