若x/2=y/3=z/4,则xy+yz+xz/x^2+y^2+z^2=
1个回答
设x=2t,y=3t,z=4t
代入原式得:26/29
相关问题
若y/x=x/2,y/z=3/4,则2xy+xz/2yz-xy=
化简(2x-y-z/x^2-xy-xz+yz)+(2y-x-z/y^2-xy-yz+xz)+(2x-x-y/z^2-xz
化简 2x-y-z x 2 -xy-xz+yz + 2y-x-z y 2 -xy-yz+xz + 2z-x-y z 2
x-y-z=3 yz-xy-xz=3 则x2+y2+z2=
求(2X+Z-Y)/(X^2-XY+XZ-YZ)-(2X+Y+Z)/(X^2+XY+XZ+YZ)
x/2=y/3=z/4,求(xy+yz+xz)/(x^2+y^2+z^2)
已知X:Y:Z=3:4:5,则(XY-2YZ-XZ)/(2X^2-Y^2+Z^2)=_____.
若x,y,z>0 则根号(x^2+y^2+xy)+根号(y^2+z^2=yz)>根号(x^2+z^2+xz)
已知xy/x+y=-2,yz/y+z=4/3,xz/x+z=-4/3,求xyz/xy+yz+xz的
已知x3+y3-z3=96,xyz=4,x2+y2+z2-xy+xz+yz=12,则x+y-z=( )