希望十二小时内有解答已知双曲线c:x^2/a^2-y^2/b^2=1(a>0,b>0)的离心率为√3,右准线方程x=√3

2个回答

  • 这种题 你就不能怕麻烦,就得死算.

    (1) e=c/a = √3,a^2/c =√3/3

    a=1,c = √3,b =√2,双曲线方程为

    2x^2 -y^2 = 2

    x^2+y^2=2上动点P(x0,y0)(x0y0≠0)处的切线方程为

    x0x+y0y = 2

    (2)

    设A,B,的坐标为(Xa,Ya),(Xb,Yb),

    则(Xa,Ya),(Xb,Yb) 为方程组

    x0x+y0y = 2 (1)

    2x^2-y^2 = 2 (2)

    的解

    (1) 代入(2)消去y,得到

    (2-x0^2/y0^2)/x^2 +4x0x/y0^2 - (4/y0^2+2) = 0

    XaXb = - (4/y0^2+2)/(2-x0^2/y0^2) = -(4+2y0^2)/(2y0^2-x0^2)

    (1) 代入(2)消去x,得到

    (2y0^2-x0^2)y^2 -8y0y + 8-2x0^2 = 0

    YaYb = (8-2x0^2)/(2y0^2-x0^2)

    XaXb+YaYb

    = -(4+2y0^2)/(2y0^2-x0^2) + (8-2x0^2)/(2y0^2-x0^2)

    = [4-2(x0^2+y0^2)]/(2y0^2-x0^2)

    (x0,y0) 是圆x^2+y^2=2的点,上式分母为0,

    XaXb+YaYb = 0

    向量OA和OB垂直,∠AOB = 90度