a1=1
a2=s2-a1=7*1
a3=s3-a1-a2=8*2
...
推测An=(3n-1)*2^(N-2)
假设当an成立
an+1=sn+1 - sn=4An+2-4An-1 -2=4*(An-An-1)
An=(3n-1)*2^(N-2)
An-1=(3n-4)*2^(n-3)
an+1=4*2^(n-3)*(6n-2-3n+4)=4*2^(n-3)*(3n+2)
=2^(n-1)*(3n+2)
=[3(n+1)-1]*2^[(n+1)-2]
显然n+1也满足
所以假设成立An=(3n-1)*2^(N-2)