做变量代换 t=x^2 dt=2xdx=2√tdx
定积分(0到根号下2π)sinx^2dx
=定积分(0到2π) (sint)/(2√t) dt
=定积分(0到π) (sint)/(2√t) dt+定积分(π到2π) (sint)/(2√t) dt
=定积分(0到π) (sint)/(2√t) dt+定积分(0到π) (sin(u+π)/(2√(u+π)) du
= 定积分(0到π) (sint)/(2√t) dt-定积分(0到π) (sin(t+π)/(2√(t+π)) dt
= 定积分(0到π) (sint)[1/(2√t)-1/(2√(t+π))] dt
注意t属于(0到π)时 sint>0 1/(2√t)-1/(2√(t+π))>0
所以原积分大于0