f(x)=2sin^2(wx+π/4)+2(cos^2wx)=1-cos(2wx+π/2)+cos(2wx)+1=sin(2wx)+cos(2wx)+2
=√2 sin(2wx+π/4)+2
两个相邻的最低点之间的距离=T=2π/2w=2π/3,所以w=3/2
f(x)=√2 sin(3x+π/4)+2
f(x)的最大值2+√2
此时sin(3x+π/4)=1,3x+π/4=π/2+2kπ,x=π/12+2/3 kπ,k=1,2,3...
f(x)=2sin^2(wx+π/4)+2(cos^2wx)=1-cos(2wx+π/2)+cos(2wx)+1=sin(2wx)+cos(2wx)+2
=√2 sin(2wx+π/4)+2
两个相邻的最低点之间的距离=T=2π/2w=2π/3,所以w=3/2
f(x)=√2 sin(3x+π/4)+2
f(x)的最大值2+√2
此时sin(3x+π/4)=1,3x+π/4=π/2+2kπ,x=π/12+2/3 kπ,k=1,2,3...