1/(1*2) = 1-1/2
1/(2*3) = 1/2-1/3
1/(3*4) = 1/3-1/4
.
1/[n*(n+1)] =1/n-1/(n+1)
把上面的相加
第一个的-1/2 和第二个的1/2 抵消
第二个的-1/3 和第三个的1/3 抵消
以此类推 前一项的后面都可以写后一项的前面抵消
...
倒数第二项的-1/n 和最后一项的 1/n抵消.
就之上下第一项的 1 和最后一项的1/(n+1)
所以结果就是1-1/(n+1)
通分得 n/(n+1)
1/(1*2) = 1-1/2
1/(2*3) = 1/2-1/3
1/(3*4) = 1/3-1/4
.
1/[n*(n+1)] =1/n-1/(n+1)
把上面的相加
第一个的-1/2 和第二个的1/2 抵消
第二个的-1/3 和第三个的1/3 抵消
以此类推 前一项的后面都可以写后一项的前面抵消
...
倒数第二项的-1/n 和最后一项的 1/n抵消.
就之上下第一项的 1 和最后一项的1/(n+1)
所以结果就是1-1/(n+1)
通分得 n/(n+1)