3(x^2-2x+1)+2y^2=3
3(x-1)^2+2y^2=3
(x-1)^2+2y^2/3=1
令x-1=cosa,x=1+cosa
则2y^2/3=1-cos²a=sin²a
所以y=√(3/2)*sina
所以x+y=1+cosa+√(3/2)*sina
=√[(√3/2)^2+1^2]sin(a+z)+1
=√(5/2)sin(a+z)+1
所以最大值=(√10)/2+1,最小值=-(根号10)/2+1.
3(x^2-2x+1)+2y^2=3
3(x-1)^2+2y^2=3
(x-1)^2+2y^2/3=1
令x-1=cosa,x=1+cosa
则2y^2/3=1-cos²a=sin²a
所以y=√(3/2)*sina
所以x+y=1+cosa+√(3/2)*sina
=√[(√3/2)^2+1^2]sin(a+z)+1
=√(5/2)sin(a+z)+1
所以最大值=(√10)/2+1,最小值=-(根号10)/2+1.