f(1/x)=积分(从1到1/x)lnt/(1+t)dt做变量替换t=1/y,t=1对应y=1,t=1/x对应y=x,则
=积分(从1到x)-lny(1+1/y)dy/(-y^2)
=积分(从1到x)lnt/[t(1+t)】dt
于是f(x)+f(1/x)=积分(从1到x){lnt/(1+t)+lnt/【t(1+t)】}dt
=积分(从1到x)lnt/tdt
=1/2(lnx)^2-1/2(ln1)^2
=1/2(lnx)^2.
f(1/x)=积分(从1到1/x)lnt/(1+t)dt做变量替换t=1/y,t=1对应y=1,t=1/x对应y=x,则
=积分(从1到x)-lny(1+1/y)dy/(-y^2)
=积分(从1到x)lnt/[t(1+t)】dt
于是f(x)+f(1/x)=积分(从1到x){lnt/(1+t)+lnt/【t(1+t)】}dt
=积分(从1到x)lnt/tdt
=1/2(lnx)^2-1/2(ln1)^2
=1/2(lnx)^2.