(1)∵数列{an}是首项为-1,公差d≠0的等差数列,
且它的第2、3、6项依次构成等比数列{bn}的前3项,
∴a32=a2•a6,即(-1+2d)2=(-1+d)(-1+5d),
解得d=0(舍)或d=2,
∴an=2n-3.
(2)由题意知b1=a2=1,b2=a3=3,
∴q=
b2
b1=3,
∴bn=3n−1,
∴cn=an•bn=(2n-3)•3n-1,
∴Sn=(-1)•30+1•3+3•32+…+(2n-3)•3n-1,①
3Sn=(-1)•3+1•32+3•33+…+(2n-3)•3n,②
①-②,得:
-2Sn=-1+2×3+2×32+2×33+…+2×3n-1-(2n-3)•3n
=-1+2×
3(1−3n−1)
1−3-(2n-3)•3n
=-4+(-2n+4)•3n,
∴Sn=(n−2)•3n+2.