函数在闭区间[a,b]上可导,不等于函数在a,b处可导.
同济高数六版上册83页如果函数在开区间(a,b)内可导且f'+(a)、f'-(b)都存在就说函数在闭区间[a,b]上可导
2个回答
相关问题
-
已知函数y=f(x)在闭区间[a,b]上连续且非常数函数,在开区间(a,b)内可导
-
闭区间上可导的疑问如果函数f(x)在开区间(a,b)内可导 且f'+(a)(点a的右导数)及f'-(b)(点b的左导数)
-
一个高数问题1.设函数 f(x)和g(x) 在闭区间 [a,b]上连续,在开区间(a,b) 内可导,且f(a)=f(b)
-
若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)可导,如果在(a,b)内f'(x)>0,则f(x)在[a,b]
-
设f(x)在闭区间[a,b] 上连续,在开区间[a,b] 内可导,且f(a)=0 ,证明存在ξ∈(a,b) ,使得 f'
-
如果函数f(x)在开区间(a,b)可导,那么闭区间[a,b]一定连续么?
-
若函数f(x)在闭区间[a,b]上连续,在(a,b)可导,且f(a)=b,f(b)=a.
-
设函数f(x)在区间(a,b)内可导,证明:函数|f(x)|^alpha在区间(a,b)内可导,其中alpha>1.
-
设函数f(x)在区间【a,b】上有意义,在开区间可导,则()
-
求解一个高数概念函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导.很多定理前面都有这个限定条件,是为了说明