a(n) = a + (n-1)d,
0 = a(k)x^2 + 2a(k+1)x + a(k+2),
Delta = [2a(k+1)]^2 - 4a(k)a(k+2) = 4[a+kd]^2 - 4[a+(k-1)d][a+(k+1)d] = 4[a+kd]^2 - 4[a+kd-d][a+kd+d] = 4[a+kd]^2 -4[a+kd]^2 + 4d^2 = 4d^2>0...
a(n) = a + (n-1)d,
0 = a(k)x^2 + 2a(k+1)x + a(k+2),
Delta = [2a(k+1)]^2 - 4a(k)a(k+2) = 4[a+kd]^2 - 4[a+(k-1)d][a+(k+1)d] = 4[a+kd]^2 - 4[a+kd-d][a+kd+d] = 4[a+kd]^2 -4[a+kd]^2 + 4d^2 = 4d^2>0...