considerf(x) = 3- 1/xf'(x) = 1/x^2 >0 f(x) is increasinga2 = 3-1/a1= 2 >a1=> {an} is increasing|an| lim(n->∞)an existsletL = lim(n->∞)ana(n+1)=3- 1/anL = 3- 1/LL^2- 3L +1=0L = (3+√5)/2lim(n->∞)an ...
如何证明a1=1,an+1=3-1/an这个数列收敛并求极限
0 f(x) is increasinga2 = 3-1/a1= 2 >a1="}}}'>
1个回答
相关问题
-
证明数列收敛并求极限a1=1,an+1=1+1/(an+1)……比较急……有人会吗?
-
高等数学证明数列收敛和求出极限设a1=1,当n>=1时,a(n+1)=(an/1+an)^1/2,证明数列收敛并且求出其
-
已知a1=2,a2=2+(1/a1),.a(n+1)=2+(1/an)证明数列{an}收敛,求其极限
-
a1=a2=1,an+1=an+an-1,n=2,3,...xn= an+1/an.证明数列{xn}收敛于((根号5)+
-
设数列{nan}收敛,且级数∑an收敛,证明级数∑n(an-an-1)也收敛
-
数列{an}中,a(n+1)=an/2an+1,a2=1/3 (1)求a1,a3 (3)证明数列{an}是等差数列
-
已知数列[an]满足An+1=1+an /3-an ,且a1=1/3,求证数列[1/(an -1)]是等差数列,并求an
-
数列{an}满足a1=1且an=3a(n-1)-2n+3(n=2,3……)求a1,a2并证明数列|an-n|是等比数列
-
在数列{an}中,a1=1,2a(n+1)=(1+1/n)^2*an,证明数列{an/n^2}是等比数列,并求{an}的
-
在数列{an}中,a1=2/3,an+1=2an/an+1 证明{1/an -1}为等比数列 求数列{(2n-1)/an