因为y1=1/x1,y2=1/x2,所以
x1-y1+x2-y2=x1-1/x1+x2-1/x2
=(x1+x2)-(x1+x2)/(x1*x2)
=(x1+x2)*[1-1/(x1*x2)]
联立两方程,得到1/x=√(4-x^2),两边同时平方,并令u=x^2,得
u^2-4*u+1=0,于是有
u1*u2=(x1*x2)^2=1,u1+u2=(x1+x2)^2-2*x1*x2=4
注意到1/x=√(4-x^2)>=0,所以x1,x2为非负,
解得x1*x2=1,x1+x2=√(2*1+4)=√6
因此x1-y1+x2-y2=(x1+x2)*[1-1/(x1*x2)]=√6*(1-1/1)=0