已知等差数列{an}的公差d>0,设{an}的前n项和为Sn,a1=1,S2•S3=36.

1个回答

  • (Ⅰ)由a1=1,S2•S3=36得,

    (a1+a2)(a1+a2+a3)=36,

    即(2+d)(3+3d)=36,化为d2+3d-10=0,

    解得d=2或-5,

    又公差d>0,则d=2,

    所以Sn=na1+

    n(n−1)

    2•d=n2(n∈N*).

    (Ⅱ)由(Ⅰ)得,an=1+2(n-1)=2n-1,

    由am+am+1+am+2+…+am+k=65得,

    (k+1)(am+am+k)

    2=65,

    即(k+1)(2m+k-1)=65,

    又m,k∈N*,则(k+1)(2m+k-1)=5×13,或(k+1)(2m+k-1)=1×65,

    下面分类求

    当k+1=5时,2m+k-1=13,解得k=4,m=5;

    当k+1=13时,2m+k-1=5,解得k=12,m=-3,故舍去;

    当k+1=1时,2m+k-1=65,解得k=0,故舍去;

    当k+1=65时,2m+k-1=1,解得k=64,m=-31,故舍去;

    综上得,k=4,m=5.