解题思路:(1)根据题意,分析可得:图形平移的距离就是线段BF的长,进而在Rt△ABC中求得BF=5cm,即图形平移的距离是5cm;
(2)在Rt△EFD中,求出FD的长,根据直角三角形的性质,可得:FG=[1/2]FD,即可求得FG的值;
(3)借助平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,容易证明.
(1)图形平移的距离就是线段BF的长,
又∵在Rt△ABC中,斜边长为10cm,∠BAC=30°,
∴BF=5cm,
∴平移的距离为5cm;
(2)∵∠A1FA=30°,
∴∠GFD=60°,∠D=30°,
∴∠FGD=90°,
在Rt△EFD中,ED=10cm,
∵FD=5
3,
∴FG=
5
3
2cm;
(3)△AHE与△DHB1中,
∵∠FAB1=∠EDF=30°,
∵FD=FA,EF=FB=FB1,
∴FD-FB1=FA-FE,即AE=DB1,
又∵∠AHE=∠DHB1,
∴△AHE≌△DHB1(AAS),
∴AH=DH.
点评:
本题考点: 旋转的性质;全等三角形的判定与性质;含30度角的直角三角形;平移的性质.
考点点评: 本题是一道全等三角形的判定、旋转的性质、平移的性质和直角三角形的性质结合求解的综合题.考查学生综合运用数学的能力.