1.求极限 n→+∞lim[(1+1/2+1/4...+1/2ⁿ) / (1+1/3+1/9...+1/3ⁿ)]
右边分子是首项为1,公比为1/2的等比数列;分母是首项为1,公比为1/3的等比数列;故:
原式=n→+∞lim[2(1-2ⁿ)/(3/2)(1-1/3ⁿ)]=2/(3/2)=4/3.
2.求极限 n→+∞lim[ (2n+1)⁴-(n-1)ⁿ] / [(n+5)⁴+(3n+1)⁴]
原式= n→+∞lim{(2n+1)⁴/[(n+5)⁴+(3n+1)⁴]-(n-1)ⁿ/[(n+5)⁴+(3n+1)⁴]}
=n→+∞lim(2n)⁴/[n⁴+(3n)⁴]- {n→+∞lim(n-1)ⁿ/[(n+5)⁴+(3n+1)⁴]}
=16/82-{n→+∞lim[nⁿ/(n⁴+81n⁴)}=8/41-{n→+∞lim[nⁿֿ⁴/82]}=-∞
如果原题分母上的两项有一项的指数不是4,而是n,那么结果就不一样了!
n→+∞lim[ (2n+1)⁴-(n-1)ⁿ] / [(n+5)⁴+(3n+1)ⁿ]
=n→+∞lim(16n⁴-nⁿ)/[n⁴+(3n)ⁿ]=n→+∞lim(16-nⁿֿ⁴)/(1+3ⁿnⁿֿ⁴)
=n→+∞lim[(16/nⁿֿ⁴)-1]/[(1/nⁿֿ⁴)+3ⁿ]=0