f(x)=2[sin(π/4+x)]^2-√3cos2x-1
=-cos(2x+π/2)-√3cos2x
=sin2x-√3cos2x
=2sin(2x-π/3) x∈R
所以f(x)=2sin(2x-π/3) x∈R
h(x)=f(x+t)的图象关于点(-π/6,0)对称
那么h(x-t)=f(x)的图象关于点(-π/6 + t,0)对称
而f(x)=2sin(2x-π/3)关于点(π/6,0)对称
所以-π/6+t=π/6+2kπ t∈(0,π/2)
t=π/3
f(x)=2[sin(π/4+x)]^2-√3cos2x-1
=-cos(2x+π/2)-√3cos2x
=sin2x-√3cos2x
=2sin(2x-π/3) x∈R
所以f(x)=2sin(2x-π/3) x∈R
h(x)=f(x+t)的图象关于点(-π/6,0)对称
那么h(x-t)=f(x)的图象关于点(-π/6 + t,0)对称
而f(x)=2sin(2x-π/3)关于点(π/6,0)对称
所以-π/6+t=π/6+2kπ t∈(0,π/2)
t=π/3