1/ab=(b-a)(1/a-1/b)
1/[a+1][b+1]=(b-a)[1/(a+1)-1/(b+1)]
.
1/[a+2004][b+2004]=(b-a)[1/(a+2004)-1/(b+2004)]
而知a=1,b=2,则b-a=1,1/(a+1)=1/b
所以:
1/ab+1/[a+1][b+1]+1/[a+2][b+2]+.+1/[a+2004][b+2004]
=(1/a-1/b)+1/(a+1)-1/(b+1)+...+1/(a+2004)-1/(b+2004)
=1-1/(b+2004)
=1-1/2006
=2005/2006