函数f(x)=x^3+ax^2+bx+c在x=2处取得极值
说明f(x)的导数f(x)'在x=2时 为0
f(x)' =3x²+2ax+b 12+4a+b=0 ①
它的图像与直线y=-3x+3在点(1,0)处相切
说明在(1 ,0)点的斜率为-3
3+2a+b =-3 ②
联立得a=-3 b=0
函数过(1 ,0)代入 f(0)=c =0
所以a=-3 b=0 c=0
函数f(x)=x^3+ax^2+bx+c在x=2处取得极值
说明f(x)的导数f(x)'在x=2时 为0
f(x)' =3x²+2ax+b 12+4a+b=0 ①
它的图像与直线y=-3x+3在点(1,0)处相切
说明在(1 ,0)点的斜率为-3
3+2a+b =-3 ②
联立得a=-3 b=0
函数过(1 ,0)代入 f(0)=c =0
所以a=-3 b=0 c=0