原方程变为a^2-(2x^2+1)a+x^4-x=0,
△=(2x^2+1)^2-4(x^2-x)=4x^2+4x+1=(2x+1)^2,
∴a=[(2x^2+1)土(2x+1)]/2=x^2+x+1或x^2-x,
∴(x+1/2)^2=a-3/4,或(x-1/2)^2=a+1/4,-1/4
原方程变为a^2-(2x^2+1)a+x^4-x=0,
△=(2x^2+1)^2-4(x^2-x)=4x^2+4x+1=(2x+1)^2,
∴a=[(2x^2+1)土(2x+1)]/2=x^2+x+1或x^2-x,
∴(x+1/2)^2=a-3/4,或(x-1/2)^2=a+1/4,-1/4