设(x^2+5x+2)/[(x+1)(x^2+1)]
=a/(x+1)+(bx+c)/(x^2+1),
去分母得x^2+5x+2=a(x^2+1)+(bx+c)(x+1)
=(a+b)x^2+(b+c)x+a+c,
比较得a+b=1,b+c=5,a+c=2,
解得a=-1,b=2,c=3.
∴(x^2+5x+2)/[(x+1)(x^2+1)]
=-1/(x+1)+(2x+3)/(x^2+1).
设(x^2+5x+2)/[(x+1)(x^2+1)]
=a/(x+1)+(bx+c)/(x^2+1),
去分母得x^2+5x+2=a(x^2+1)+(bx+c)(x+1)
=(a+b)x^2+(b+c)x+a+c,
比较得a+b=1,b+c=5,a+c=2,
解得a=-1,b=2,c=3.
∴(x^2+5x+2)/[(x+1)(x^2+1)]
=-1/(x+1)+(2x+3)/(x^2+1).