求不定积分?∫(tanx-1)^2dx

2个回答

  • ∫(tanx-1)^2dx=∫(tan^2(x)+1-2tanx)dx

    =∫(sec^2-2tanx)dx

    =∫(1/cos^2(x) - 2tanx)dx

    =∫(2/(1+cos2x) - 2tanx)dx

    =∫(1/(1+cos2x))d(2x) -2∫tanxdx

    现在求∫(1/1+cos2x)d(2x)

    分部积分后可得

    tan(x) + constant

    ∫tanxdx

    =-log(cos(x)) + constant

    原式 = tan(x) + 2log(cos(x)) + constant

    =