解;lim x→+∞:(x√x)sin1/x/ 1-√x
因为当x→+∞ 1/x→0 lim1/x=limsin1/x
所以:lim x→+∞(x√x)sin1/x/ 1-√x
=limx→+∞(x√x)sin1/x/ 1-√x
=limx→+∞x√x*1/x/1-√x
=limx→+∞√x/1-√x
=-1
解;lim x→+∞:(x√x)sin1/x/ 1-√x
因为当x→+∞ 1/x→0 lim1/x=limsin1/x
所以:lim x→+∞(x√x)sin1/x/ 1-√x
=limx→+∞(x√x)sin1/x/ 1-√x
=limx→+∞x√x*1/x/1-√x
=limx→+∞√x/1-√x
=-1