解题思路:根据代数式的性质:乘以(7-1),在除以6结果不变,可化成平方差的形式,根据平方差公式,可得答案.
原式=
(7+1)(7−1)(72+1)
6•(74+1)(716+1)(78+1)
=[1/6](72-1)(72+1)(74+1)(78+1)(716+1)(732+1)
=[1/6](74-1))(74+1)(78+1)(716+1)(732+1)
=[1/6](78-1)(78+1)(716+1)(732+1)
=[1/6](716-1)(716+1)(732+1)
=[1/6](732-1)(732+1)
=[1/6](764-1).
点评:
本题考点: 平方差公式.
考点点评: 本题考查了平方差公式,乘以(7-1)除以6化成平方差的形式是解题关键.