计算:8(72+1)(74+1)(78+1)(716+1)(732+1).

1个回答

  • 解题思路:根据代数式的性质:乘以(7-1),在除以6结果不变,可化成平方差的形式,根据平方差公式,可得答案.

    原式=

    (7+1)(7−1)(72+1)

    6•(74+1)(716+1)(78+1)

    =[1/6](72-1)(72+1)(74+1)(78+1)(716+1)(732+1)

    =[1/6](74-1))(74+1)(78+1)(716+1)(732+1)

    =[1/6](78-1)(78+1)(716+1)(732+1)

    =[1/6](716-1)(716+1)(732+1)

    =[1/6](732-1)(732+1)

    =[1/6](764-1).

    点评:

    本题考点: 平方差公式.

    考点点评: 本题考查了平方差公式,乘以(7-1)除以6化成平方差的形式是解题关键.