tan[(a+b)/2]等于什么

1个回答

  • 答案1:按公式tan(A+B) = (tanA+tanB)/(1-tanAtanB)展开

    tan[(a+b)/2]=tan(a/2+b/2)=(tana/2+tanb/2)/(1-tana/2tanb/2)

    答案2:tan(A/2+B/2)=(sinA+sinB)/(cosA+cosB)

    sinA+sinB

    =sin((A+B)/2+(A-B)/2)+sin((A+B)/2-(A-B)/2)

    =sin(A+B)/2 *cos(A-B)/2

    cosA+cosB

    =cos((A+B)/2+(A-B)/2)+cos((A+B)/2-(A-B)/2)

    =cos(A+B)/2 *cos(A-B)/2

    (sinA+sinB)/(cosA+cosB)

    =[sin(A+B)/2 *cos(A-B)/2 ]/[cos(A+B)/2 *cos(A-B)/2]

    =[sin(A+B)/2]/[cos(A+B)/2]

    =tan(A/2+B/2)