求有理函数的不定积分:∫x/x2+x+1 dx

3个回答

  • ∫x/(x^2+x+1) dx

    = (1/2)∫ dln(x^2+x+1) -(1/2)∫1/(x^2+x+1) dx

    = (1/2)ln(x^2+x+1) -(1/2)∫1/(x^2+x+1) dx

    x^2+x+1= (x+1/2)^2+3/4

    let

    x+1/2 = (√3/2) tana

    dx =(√3/2) (seca)^2 da

    ∫1/(x^2+x+1) dx

    =∫(1/[(3/4)(seca)^2] ) (√3/2) (seca)^2 da

    =(2√3/3)∫ da

    =(2√3/3)a + C'

    =(2√3/3) arctan[(2x+1)/√3]+ C'

    ∫x/(x^2+x+1) dx

    = (1/2)ln(x^2+x+1) -(1/2)∫1/(x^2+x+1) dx

    = (1/2)ln(x^2+x+1) -(√3/3) arctan[(2x+1)/√3]+ C