设an=1+(n-1)d,bn=q^(n-1)
则1+2d+q^4=21
1+4d+q^2=13
解得d=2
q=2
所以 an=2n-1,bn=2^(n-1)
令Sn为数列an/bn的前项和,则
Sn=1/1+3/2+5/4+……+(2n-1)/2^(n-1) ①
两边同乘以2,得
2Sn=2/1+3/1+5/2+……+(2n-1)/2^(n-2) ②
②-①【错位相减】,得
Sn=2/1+2/1+2/2+……+2/2^(n-2)-(2n-1)/2^(n-1)
=2+2*[1/1+1/2+1/4+……+1/2^(n-2)]-(2n-1)/2^(n-1)
=2+2*[1-(1/2)^(n-1)]/(1-1/2)- (2n-1)/2^(n-1)
=2+4*[1-(1/2)^(n-1)]-(2n-1)/2^(n-1)
=2+4-4/2^(n-1)-(2n-1)/2^(n-1)
=6-(4+2n-1)/2^(n-1)
=6-(2n+3)/2^(n-1)