an是等差数列,bn是各项都为正数的等比数列,a1=b1,a3+b5=21,a5+b3=13,求an乘bn的前n项和sn

3个回答

  • 设an=1+(n-1)d,bn=q^(n-1)

    则1+2d+q^4=21

    1+4d+q^2=13

    解得d=2

    q=2

    所以 an=2n-1,bn=2^(n-1)

    令Sn为数列an/bn的前项和,则

    Sn=1/1+3/2+5/4+……+(2n-1)/2^(n-1) ①

    两边同乘以2,得

    2Sn=2/1+3/1+5/2+……+(2n-1)/2^(n-2) ②

    ②-①【错位相减】,得

    Sn=2/1+2/1+2/2+……+2/2^(n-2)-(2n-1)/2^(n-1)

    =2+2*[1/1+1/2+1/4+……+1/2^(n-2)]-(2n-1)/2^(n-1)

    =2+2*[1-(1/2)^(n-1)]/(1-1/2)- (2n-1)/2^(n-1)

    =2+4*[1-(1/2)^(n-1)]-(2n-1)/2^(n-1)

    =2+4-4/2^(n-1)-(2n-1)/2^(n-1)

    =6-(4+2n-1)/2^(n-1)

    =6-(2n+3)/2^(n-1)