∫ ln(x² + 1) dx
= xln(x² + 1) - ∫ x * 2x/(x² + 1) dx
= xln(x² + 1) - 2∫ x²/(x² + 1) dx
= xln(x² + 1) - 2∫ (x² + 1 - 1)/(x² + 1) dx
= xln(x² + 1) - 2∫ dx + 2∫ dx/(x² + 1)
= xln(x² + 1) - 2x + 2arctan(x) + C
∫ ln(x² + 1) dx
= xln(x² + 1) - ∫ x * 2x/(x² + 1) dx
= xln(x² + 1) - 2∫ x²/(x² + 1) dx
= xln(x² + 1) - 2∫ (x² + 1 - 1)/(x² + 1) dx
= xln(x² + 1) - 2∫ dx + 2∫ dx/(x² + 1)
= xln(x² + 1) - 2x + 2arctan(x) + C