已知p为抛物线y^2=4x上一个动点,直线l1:x=-1,l2:x+y+3=0,则p到直线l1、l2的距离之和的最小值为
1个回答
according to 抛物线定义 到x=-1的距离等于到fF(1,0)的距离
L2和抛物线联立没解 所以就是F到L2的距离为最小值
得2√2
相关问题
已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是
已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是
已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是
已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是
已知点P在抛物线y2=4x上,则点P到直线L1:4x-3y+6=0的距离和到直线L2:x=-1的距离之和的最小值为___
已知直线L1:4x-3y+6=0和直线L2:x=0抛物线y^2=4x上一动点p到直线L1和直线L2距离之和的最小值是?
已知直线l1:4x-3y+11=0和直线l2:x+1=0,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小
若P是抛物线x2=4y上的一个动点,则点P到直线l1:y=-1,l2:3x+4y+12=0的距离之和的最小值为( )
已知P是抛物线x2=4y上的一个动点,则点P到直线l1:4x-3y-7=0和l2:y+2=0的距离之和的最小值是( )
已知直线l1:4x-3y+6=0和直线l2:x+2=0,求抛物线y²=4x上一动点P到直线l2和l1的距离之和