丨x - 2丨+ √(x ² + 4 x + 4)- √(x ² - 2 x + 1)
= 丨x - 2丨+ √(x + 2)² - √(x - 1)²
= 丨x - 2丨+ 丨x + 2丨-丨x - 1丨
① 当 x ≥ 2 时,则:x - 2 ≥ 0 ,x + 2 > 0 ,x - 1 > 0
∴ 丨x - 2丨+ 丨x + 2丨-丨x - 1丨
= (x - 2)+(x + 2)-(x - 1)
= x - 2 + x + 2 - x + 1
= x + 1
② 当 1 ≤ x < 2 时,则:x - 2 < 0 ,x + 2 > 0 ,x - 1 ≥ 0
∴ 丨x - 2丨+ 丨x + 2丨-丨x - 1丨
= -(x - 2)+ (x + 2)- (x - 1)
= - x + 2 + x + 2 - x + 1
= - x + 5
③ 当 - 2 ≤ x < 1 时 ,则:x - 2 < 0 .x + 2 ≥ 0 ,x - 1 < 0
∴ 丨x - 2丨+ 丨x + 2丨-丨x - 1丨
= -(x - 2)+(x + 2)+(x - 1)
= - x + 2 + x + 2 + x - 1
= x + 3
④ 当 x < - 2 时,则 :x - 2 < 0 ,x + 2 < 0 ,x - 1 < 0
∴ 丨x - 2丨+ 丨x + 2丨-丨x - 1丨
= -(x - 2)-(x + 2)+(x - 1)
= - x + 2 - x - 2 + x - 1
= - x - 1
综上,丨x - 2丨+ 丨x + 2丨-丨x - 1丨 = x + 1 或 - x + 5 或 x + 3 或 - x - 1