设a=(xa,ya),b=(xb.yb)
|a|=√(xa^2+ya^2)=4
xa^2+ya^2=16
|b|=√(xb^2+yb^2)=5
xb^2+yb^2=25
cos(a,b)=a*b/|a|*|b|=1/2
a*b=1/2*|a|*|b|=1/2*5*4=10
a*b=xaxb+yayb=10
|3a-b|=|(3xa-xb,3ya-yb)|=√[(3xa-xb)^2+(3ya-yb)^2]
=√(9xa^2-6xaxb+xb^2+9ya^2-6yayb+yb^2)
=√[9(xa^2+ya^2)+(xb^2+yb^2)-6(xaxb+yayb)]
=√(9*16+25-6*10)
=√109