设B点坐标为(x,y)∵点A坐标为(1,2)
∴OA=√(1²+2²)=√5当OB=OA时√(x²+y²)=√[x²+(-2x+1 )²]=√5∴x²+( -2x+1 )² =5=>5x²-4x-4=0解得x1=(2+8√6)/5;x2=(2-8√6)/5;将x1,x2分别代入y=-2x+1解得y1=(1-16√6)/5;y2=(1+16√6)/5当AB=OB时√(x²+y²)=√[(1-x)²+(2-y)²]=>√[x²+( -2x+1 )²]=√[(1-x)²+(2+2x-1 )²]
=>x²+( -2x+1 )²=(1-x)²+(2x+1 )²
=>6x=-1
=>x=-1/6,代入y=-2x+1解得y=4/3当OA=AB时√[(1-x)²+(2-y)²]=√5=>√[(1-x)²+(2+2x-1 )²]=√5
=>(1-x)²+(2x+1 )²=5
=>5x²+2x-3=0
解得x3=-1,x4=3/5
将x3,x4分别代入y=-2x+1解得y3=3;y4=-1/5
综上D点的坐标为[(2+8√6)/5,(1-16√6)/5)]或[(2-8√6)/5,(1+16√6)/5]或[-1,3]或[3/5,-1/5]