分解部分分式:
x^4/(1-x^4)
=-1+1/(1-x^4)
=-1+0.5/(1-x²)+0.5/(1+x²)
=-1+0.25/(1-x)+0.25/(1+x)+0.5/(1+x²)
直接积分,得原函数=-x-0.25ln|1-x|+0.25ln|1+x|+0.5arctanx
分解部分分式:
x^4/(1-x^4)
=-1+1/(1-x^4)
=-1+0.5/(1-x²)+0.5/(1+x²)
=-1+0.25/(1-x)+0.25/(1+x)+0.5/(1+x²)
直接积分,得原函数=-x-0.25ln|1-x|+0.25ln|1+x|+0.5arctanx