关于球的表面积公式球的表面积公式,其推导方式在高中课本上是这样的:依照纬线把球分成许多个圆台,所有圆台侧面积之和即球的表

1个回答

  • “经线和赤道把球面分成许多个小三角形”这里有问题,一旦分得很细的时候,三角形萎缩成线,那么面积微元 dS = 2πR*Rdθ,积分区间为(0,π) 则 S = 2(πR)^2,看上去很合理,其实只要注意到“两极地区”被无数次夸大——相当于使用很细的圆环构造球形,两级地区重叠多次,并不是球的面积了.

    关键:积分不能有重叠计算.

    .补充.

    你得到的结果是半个球体.如果是使用三角形面积公式得到面积微分元dS,那么就存在一个问题:球面空间三角形面积公式不是平直空间那个二分之一底乘高了.

    常见计算方法:

    取“纬度线”累积处理,每个“纬度线”面积微元dS = 2πRcosθ*Rdθ,积分区间θ = (-π,+π).

    S = 2πR^2*sinθ|(-π,+π) = 4πR^2