f(x)在[1,2]上二阶可导,则F(x)在[1,2]上二阶可导.
F(1)=0, F(2)=f(2)=0
由Roll中值定理,在(1,2)上至少存在一点 p,使得,F'(p)=0.
又F'(x)=f(x)+(x-1)f'(x)知,F'(1)=0
F'(x)在[1,p]上满足Roll中值定理条件,
故在(1,p)上,至少存在一点 *,使得,F''(*)=0....
f(x)在[1,2]上二阶可导,则F(x)在[1,2]上二阶可导.
F(1)=0, F(2)=f(2)=0
由Roll中值定理,在(1,2)上至少存在一点 p,使得,F'(p)=0.
又F'(x)=f(x)+(x-1)f'(x)知,F'(1)=0
F'(x)在[1,p]上满足Roll中值定理条件,
故在(1,p)上,至少存在一点 *,使得,F''(*)=0....