(sin2θ+sinθ)/[2cos2θ+2(sinθ)^2+cosθ]
=(2sinθcosθ+sinθ)/[2(1-2(sinθ)^2)+2(sinθ)^2+cosθ]
=(2sinθcosθ+sinθ]/[2-2(sinθ)^2+cosθ]
=[sinθ(2cosθ+1)]/[2(cosθ)^2+cosθ]
=[sinθ(2cosθ+1)]/[cosθ(2cosθ+1)]
=sinθ/cosθ=tanθ
所以:原等式成立
(sin2θ+sinθ)/[2cos2θ+2(sinθ)^2+cosθ]
=(2sinθcosθ+sinθ)/[2(1-2(sinθ)^2)+2(sinθ)^2+cosθ]
=(2sinθcosθ+sinθ]/[2-2(sinθ)^2+cosθ]
=[sinθ(2cosθ+1)]/[2(cosθ)^2+cosθ]
=[sinθ(2cosθ+1)]/[cosθ(2cosθ+1)]
=sinθ/cosθ=tanθ
所以:原等式成立