解题思路:由切线长定理可得PA=PB,CA=CE,DE=DB,由于△PCD的周长=PC+CE+ED+PD,所以△PCD的周=PC+CA+BD+PD=PA+PB=2PA,故可求得三角形的周长.
∵PA、PB为圆的两条相交切线,
∴PA=PB,
同理可得:CA=CE,DE=DB.
∵△PCD的周长=PC+CE+ED+PD,
∴△PCD的周长=PC+CA+BD+PD=PA+PB=2PA,
∴△PCD的周长=10,
故选D.
点评:
本题考点: 切线长定理.
考点点评: 本题考查了切线的性质以及切线长定理的运用.