解题思路:(1)证明点(x,y)关于(a,-1)的对称点为(2a-x,-2-y),也在图象上即可.
(2)化简不等式f(x)≥-2x为22x-a+2x-2≥0,构造函数h(x)=22x-a+2x-2,f(x)≥-2x在x≥a上恒成立等价于h(x)≥0,利用导数求出h(x)在[a,+∞)的最小值h(a),解不等式2•2a-2≥0即可求出a的范围.
(1)证明:假设(x,y)为此函数的一点,那么此点关于(a,-1)的对称点为(2a-x,-2-y),则
f(2a-x)=-
2
22a−x−a+1=-2+
2
2x−a+1=-2-y,
∴点(x,y)关于(a,-1)的对称点为(2a-x,-2-y),也在图象上,
∴f(x)的图象关于M(a,-1)对称;
(2)∵函数f(x)=-
2
2x−a+1,
∴f(x)≥-2x可化为-
2
2x−a+1≥-2x,
即22x-a+2x-2≥0,
令h(x)=22x-a+2x-2,
则h′(x)=22x-a•2ln2+2x•ln2
=(22x-a•2+2x)ln2,
∵ln2>0,
∴h′(x)>0,
∴函数f(x)=-
2
2x−a+1在[a,+∞)上单调递增,
∴h(x)=22x-a+2x-2≥h(a)=2•2a-2,
∵f(x)≥-2x在x≥a上恒成立等价于,
h(a)=2•2a-2≥0,
∴a≥0,
∴实数a的取值范围是[0,+∞).
点评:
本题考点: 函数恒成立问题.
考点点评: 本题考查对称问题,考查导数在求函数最值中的应用,以及恒成立问题的转化,构造函数是解题的关键,属于中档题.