因为a^2=a^2-ab+ab=a(a-b)+ab,
所以a^2+1/ab+1/a(a-b)
=ab+1/ab+a(a-b)+1/a(a-b)
≥2+2=4,
所以a^2+1/ab+1/a(a-b)的取值范围是[4,+∞)