设:2^x=3^y=5^z=a>1
哪么:x=log2(a),y=log3(a),z=log5(a)
2x=2log2(a)=1/(1/2)log2(a)=log(根号2)(a)
=lg(a)/lg(根号2)
同理,3y=log(三次根号3)(a)=lg(a)/lg(三次根号3)
5z=log(五次根号5)(a)=lg(a)/lg(五次根号5)
而:五次根号5《根号2《三次根号3
所以:5z>2x>3y
设:2^x=3^y=5^z=a>1
哪么:x=log2(a),y=log3(a),z=log5(a)
2x=2log2(a)=1/(1/2)log2(a)=log(根号2)(a)
=lg(a)/lg(根号2)
同理,3y=log(三次根号3)(a)=lg(a)/lg(三次根号3)
5z=log(五次根号5)(a)=lg(a)/lg(五次根号5)
而:五次根号5《根号2《三次根号3
所以:5z>2x>3y