设数列{a n }为等比数列, a 1 = C 2m+3 3m A m-2 1 ,公比q是 (x+ 1 4 x 2 )

1个回答

  • (1)由a 1=

    C 3m2m+3 •

    A 1m-2 得

    2m+3≥3m

    m-2≥1 ⇔

    m≤3

    m≥3 ,

    ∴m=3,

    (2)a 1=

    C 99 •

    A 11 =1.

    又 (x+

    1

    4 x 2 ) 4 展开式中第2项T 2=

    C 14 •x 3•(

    1

    4x 2 )=x,即公比为x,

    ∴a n=x n-1

    ∴S n=

    n,x=1

    1 -x n

    1-x ,x≠1 ;

    (2)由S n表达式引发讨论:

    (Ⅰ)当x=1时,S n=n,此时A n=

    C 1n +2

    C 2n +3

    C 3n +…+n

    C nn ,①

    又A n=n

    C 0n +(n-1)

    C 1n +…+1•

    C n-1n ②

    ∴①+②得2A n=n(

    C 0n +

    C 1n +…+

    C nn )=n•2 n

    ∴A n=n•2 n-1

    (Ⅱ)当x≠1时,S n=

    1 -x n

    1-x ,此时A n=

    1-x

    1-x

    C 1n +

    1 -x 2

    1-x

    C 2n +…+

    1 -x n

    1-x

    C nn

    =

    1

    1-x [(

    C 1n +

    C 2n +…+

    C nn )-(x

    C 1n +x 2

    C 2n +x 3

    C 3n +…+x n

    C nn )]

    =

    1

    1-x {(2 n-1)-[(1+x) n-1]}

    =

    1

    1-x [2 n-(1+x) n].