(1)由a 1=
C 3m2m+3 •
A 1m-2 得
2m+3≥3m
m-2≥1 ⇔
m≤3
m≥3 ,
∴m=3,
(2)a 1=
C 99 •
A 11 =1.
又 (x+
1
4 x 2 ) 4 展开式中第2项T 2=
C 14 •x 3•(
1
4x 2 )=x,即公比为x,
∴a n=x n-1,
∴S n=
n,x=1
1 -x n
1-x ,x≠1 ;
(2)由S n表达式引发讨论:
(Ⅰ)当x=1时,S n=n,此时A n=
C 1n +2
C 2n +3
C 3n +…+n
C nn ,①
又A n=n
C 0n +(n-1)
C 1n +…+1•
C n-1n ②
∴①+②得2A n=n(
C 0n +
C 1n +…+
C nn )=n•2 n,
∴A n=n•2 n-1.
(Ⅱ)当x≠1时,S n=
1 -x n
1-x ,此时A n=
1-x
1-x
C 1n +
1 -x 2
1-x
C 2n +…+
1 -x n
1-x
C nn
=
1
1-x [(
C 1n +
C 2n +…+
C nn )-(x
C 1n +x 2
C 2n +x 3
C 3n +…+x n
C nn )]
=
1
1-x {(2 n-1)-[(1+x) n-1]}
=
1
1-x [2 n-(1+x) n].