∵ABCD是矩形
∴AD=BC,AB=CD
∠A=∠D=90°
∵AB/BC=4/5
∴BC=5/4AB
∵△BCE≌△FCE
∴CF=BC,BE=EF
∵在Rt△CDF中:
DF²=CF²-CD²=BC²-AB²=(5/4AB)²-AB²=9/16AB²
DF=3/4AB
∴AF=AD-DF=BC-DF=5/4AB-3/4AB=1/2AB
AE=AB-BE=AB-EF
∴在Rt△AEF中:
EF²=AF²+AE²
EF²=(1/2AB)²+(AB-EF)²
EF²=1/4AB²+AB²-2AB×EF+EF²
EF=5/8AB
∴sin∠AEF=AF/EF=(1/2AB)/(5/8AB)=4/5