Cos[Pi/32] Cos[Pi/16] Cos[Pi/8] = 1/(Sec[Pi/8] Sec[Pi/16] Sec[Pi/32]) = -((-1)^(25/32) (1 + (-1)^(1/16)) (1 + (-1)^(1/8)) (1 + (-1)^(1/4)))/8
cos(π/32)*cos(π/16)*cos(π/8)=
1个回答
相关问题
-
求SINπ/64 COSπ/64 COSπ/32 COSπ/16 COSπ/8!急救急救
-
根号2sinπ/32*cosπ/32*cosπ/16*cosπ/18 怎么化简
-
求值-cosπ/16sinπ/16cosπ/8
-
cos2/15π+cos4/15π+cos8/15π+cos16/15π
-
cos π/15 * cos 2π/15 * cos4π/15 * cos8π/15
-
cosπ17cos2π17cos4π17cos8π17=______.
-
cosπ17cos2π17cos4π17cos8π17=______.
-
cos(5π/8)*cosπ/8
-
不用计算器,求(cos(π/8))^4+(cos(3π/8))^4+(cos(5π/8))^4+(cos(7π/8))^
-
(cosπ/8+sinπ/8)(cos^3π/8-sin^3π/8).